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Caitlin Gabor, Texas State University, obtains hormones excreted in the water from tadpoles while in the field. Here she is cleaning containers before placing fresh 
water and tadpoles into the cups. At which point she will agitate the tadpoles/cups all once for one minute every third minute for an hour. By doing this she can 
measure the glucocorticoid profile of tadpoles at three time points sequentially as an indication of their stress profile - at baseline, stress response (agitation), and 
then a third for recovery from the stressor. © Jaime Bosch
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Abstract

Amphibian populations are routinely exposed to chemical contaminants in their habitat because contamination is 

pervasive in industrial, residential, and agricultural areas; contamination moves to remoter regions through aerial 

drift, runoff, food webs via bioaccumulation and biomagnification, and the water cycle, resulting in contaminant 

exposure in all natural systems. Exposure to upwind agriculture has been one of the few causal factors linked to 

amphibian population declines across a large geographic area, yet expected environmental exposures are often 

below lethal thresholds, suggesting that interactions with other natural and anthropogenic factors may be the key 

avenue through which contaminants elicit impacts on individuals and populations. Recent data reveal that direct 

exposure to contaminants can alter physiology or gene expression, causing long-lasting effects that go beyond 

the exposure period, in some cases even extending across generations. In their natural habitats, amphibians must 

cope with several biotic (competitors, predators, and pathogens) and abiotic stressors (temperature, precipitation 

and other environmental conditions). Anthropogenic stressors, such as habitat alteration/degradation, pollution 

and climate change, provide an additional challenge to these species. Evidence suggests that the presence of 

multiple stressors increases the likelihood that contaminants will cause effects on amphibians and their populations, 

potentially increasing their extinction risk. While some contamination is perhaps unavoidable in a human-dominated 

globe, there are ways to reduce exposure to contaminants, such as managing their release and use, creating 

biological buffers from areas of exposure, and implementing better policies that protect natural systems. Managing 

the risk of contaminants to amphibians will require a concerted effort among scientists, policymakers, local 

communities, landowners, and other stakeholders around the world to protect amphibians and the natural systems 

of which they are part.

Introduction

On a planet where over 6 billion pounds of active 

ingredient pesticides are sold each year (Atwood 

& Paisley-Jones, 2017) and where an estimated 

90–100,000 chemicals are released into the 

environment from agricultural and industrial activities 

(Holt, 2000), chemical contaminants are widespread 

and found in every environment. Contamination from 

pesticide pollution alone is widespread with 64% of 
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agricultural lands at risk to exposure to more than 

one contaminant (Tang et al., 2021). Further, there 

is a high overlap between areas prone to pesticide 

exposure and high-biodiversity regions, particularly in 

South Africa, China, India, Australia, and Argentina, 

although the risk is global (Tang et al., 2021). These 

contaminants can be detected above and below 

ground, posing a threat to living organisms through 

direct exposure and indirect routes via water systems 

and food webs. Early reports of amphibian population 

declines (Wake, 1991) posited that contaminants could 

play an important role in declines and approximately 

30% of globally threatened amphibians are affected by 

pollution (Baillie, Hilton-Taylor & Stuart, 2004).
 
A recent assessment on our progress elucidating the 

causes of amphibian declines (Green et al., 2020), 

however, did not explicitly include contaminants. 

Yet, of the many attempts to look for causal factors, 

contaminants have been one of the few statistically 

linked to declines: Upwind pesticide use has been 

associated with amphibian population declines in 

California, USA across numerous studies (Davidson, 

2004; Davidson & Knapp, 2007; Davidson, Shaffer 

& Jennings, 2001, 2002). Further, California is one 

of the places with the best records for pesticide use 

and application rates, making it one of the areas 

more likely to find associations if they existed. 

Yet, directly linking contaminants to declines is 

difficult (Bradford et al., 2011; Davidson, Stanley & 

Simonich, 2012; Grant et al., 2016, 2020) given that 

environmental concentrations are often below known 

effect thresholds, contaminant effects can appear 

years after exposure, the types of contaminants 

used change over time, testing often occurs long 

after a contaminant is used, peak concentrations 

that cause effects may occur well before testing, 

break-down products may have different toxicity, 

and demographic data on amphibians is scarce 

(Conde et al., 2019). Additionally, the sheer number 

of contaminants found in environments (Smalling et 

al., 2012) and the temporal and spatial variation in 

application make pinpointing contaminants as a driver 

of amphibian declines problematic. Indeed, despite 

chemical innovation that has led to a diversity of novel 

products (e.g. PFAS [perfluoroalkyl and polyfluoroalkyl 

substances], antimicrobials, microplastics; Kumar, 

Borah & Devi, 2020), our current understanding of the 

role of contaminants on amphibian declines stems 

from work on selected pollutants (Egea-Serrano et 

al., 2012). However, population viability analysis by 

Willson et al. (2012) demonstrated how contami-

nants that impact larval and juvenile survival can 

increase the risk of local extirpation, suggesting that 

understanding the effects on key life stages can be 

important for predicting population consequences. 

For all of these reasons, determining cause-effect 

linkages is challenging even if contaminants were a 

central causative factor in declines.

Despite the risk of chemical contaminants to 

amphibians, the initial concern that amphibians 

may be more sensitive to contaminants than other 

vertebrates because of their permeable eggs, skin, 

and gills (Bishop & Pettit, 1992), has not been 

supported (Bridges et al., 2002; Kerby et al. , 2010). 

Larval amphibian susceptibility to contaminants is 

roughly similar to that of fish (Glaberman, Kiwiet & 

Aubee, 2019; Ortiz-Santaliestra et al., 2018), although 

variation exists within and between species and 

taxonomic groups (Bridges & Semlitsch, 2000), which 

can change with repeated exposure (Hua, Jones 

& Relyea, 2014; Hua, Morehouse & Relyea, 2013). 

Assessment of contaminant risks could also vary 

across biogeographical regions, but most research 

has focused on species in the Northern Hemisphere, 

which biases research toward certain types of 

contaminants, species with complex life cycles, and 

a narrow set of life history traits (Schiesari, Grillitsch 

& Grillitsch, 2007). Nevertheless, amphibians are 

susceptible to environmental contaminants (Baker, 

Bancroft & Garcia, 2013), and contaminants could 

pose an important threat to amphibian populations in 

the wild (Willson et al., 2012).

Collectively, while substantial progress has been 

made in past decades, the major goals of this 

chapter are to highlight research gaps, suggest key 

research directions towards the goal of continuing 

to understand amphibian vulnerability to chemical 

contamination, and identify actions to mitigate and 

reduce the effects of contamination on amphibian 

communities. In 2007, contaminant risks were 

assessed and reviewed by the IUCN working group 
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(Gascon et al., 2007) and recommendations were 

updated in 2015 (Wren et al., 2015), which noted 

the potential for contaminant exposure risks to 

amphibians in ways that may be more obvious 

(mortality) to more subtle (endocrine disruption, 

impacts on fertility, reduced overwinter survival). 

These assessments and others have noted that 

the most serious threat to amphibians from 

contaminants is their potential to interact with other 

factors like habitat loss and degradation, novel 

diseases, climatic changes, exotic invasive species, 

and natural factors like predators/parasites and 

competitors (Carey et al., 2001; Grant et al., 2016; 

Hayes et al., 2006). The data have come to support 

this supposition in the last decade (e.g. Davis et al., 

2020; Rohr et al., 2008a; Rumschlag & Rohr, 2018). 

Contaminants can change community composition, 

which can alter critical life history traits and alter 

susceptibility to abiotic and biotic factors, and serve 

as a physiological stressor, which can influence the 

susceptibility to other environmental stressors and 

the likelihood for interactive effects.

Because current research suggests the important role 

of contaminants as both an additive (i.e. combined 

effects equal the sum of the effects of each factor 

alone) and interactive factor in natural systems, 

the potential for interactions between expected 

and observed environmental concentrations of 

contaminants and other factors is the focus of our 

review here. The objectives of this chapter are to 1) 

review key ecotoxicological research not addressed 

in previous IUCN assessments, 2) identify gaps in 

amphibian ecotoxicology knowledge, 3) evaluate 

the priorities for future amphibian ecotoxicology 

research, and 4) provide effective and strategic 

conservation recommendations to mitigate contam-

inant risks to amphibians. 

Contaminant risks

Types of chemical risks to amphibians

Amphibians are vulnerable to toxicants and 

pollutants from several sources (Figure 4.1) and 

very different chemical natures, which have been 

reviewed extensively elsewhere (e.g. Sparling et 

al., 2010; Thambirajah et al., 2019) and which are 

summarised here briefly. Industrial and agricultural 

chemicals likely constitute the most pervasive type 

of chemicals to which amphibians are exposed, 

as they contaminate soils and the water bodies 

that amphibians use as primary breeding habitats. 

These substances cause direct damage to larval 

and adult amphibians through poisoning, endo-

crine disruption, or other means of physiological 

impairment. Some of these substances are highly 

persistent in the natural environment and amenable 

to bioaccumulation, consequently remaining a 

grave concern even long after their use is stopped 

or legally banned. Insecticides (e.g. DDT, carbaryl, 

deltamethrin, parathion, rotenone, esfenvalerate, 

3-trifluoromethyl-4-nitrophenol, endosulfan, endrin, 

toxaphene) and herbicides (glyphosate, atrazine, 

acetochlor, triclopyr, paraquat) pose a major threat 

to amphibians, given the frequent and extensive use 

of them worldwide. Phosphorus and nitrogenous 

compounds widely used as fertilisers in agricultural 

fields (e.g. nitrates, nitrites, ammonia, humic acid) 

often spill over to aquatic habitats, also decreasing 

survival and otherwise affecting larval development 

of amphibians. Similarly, secondary salinization 

of freshwater systems, which has increased over 

the past several decades due to human activities 

such as agricultural irrigation, coastal flooding, and 

the application of road salts (Cañedo-Argüelles 

et al., 2016; Saumure et al., 2021) can result in 

direct mortality of freshwater species leading to 

deleterious outcomes for wildlife populations (Hintz 

& Relyea, 2019). Other contaminants derived from 

industrial activity are also a common concern for the 

well-being of amphibians, from flame retardants to 

chemicals used in the manufacture of plastics and 

resins. These include substances such as polychlo-

rinated biphenyls (PCBs), polybrominated diphenyl 

ethers (PBDEs), bisphenol A (BPA), tetrabromo-

bisphenol A (TBBPA), dioxins, genistein, furans, 

perfluorooctanesulfonate (PFOS), perchlorates or 

phthalates. Another group of toxicants derived from 

industrial and mining activities are metals, metal-

loids, and nanoparticles, including arsenic, boron, 

cadmium, chromium, copper, lead, mercury, nickel, 

selenium, silver, or zinc. Petroleum oil products 
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can be often spilled to water bodies, and both their 

polycyclic aromatic hydrocarbons and the naph-

thenic acid represent direct threats to amphibians. 

Pharmaceutical and personal care products are 

additional sources of chemical pollution that raise 

concern, particularly considering that methimazole, 

ibuprofen, estrogen, propylthiouracil, ethylen-

ethiourea, triclosan, and triclocarban, all can interfere 

with amphibians’ endocrine pathways. In the end, 

chemical contaminants of diverse sources and types 

move through water in natural and human-made 

systems, making amphibians vulnerable to exposure 

to pollution during their life cycles.

Generalizable toxicity across classes, types, and 

modes of action of active ingredients

Predicting the effects of the thousands of environ-

mental contaminants is enormously challenging 

because of the diverse array of contaminants to which 

ecosystems are exposed. Although basic toxico-

logical data are available for a few model organisms, 

the ecological ramifications of exposure for most 

contaminants are not clear. Predicting responses in 

natural systems, however, is critical so that effects of 

exposure can be reasonably estimated for regulatory 

purposes—and such predictions are possible. An 
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Figure 4.1: Human population size and consumption drives the industrial, residential, and agricultural footprints on the landscape that can 
contribute to chemical contamination of aquatic and terrestrial ecosystems. Source: Developed by Michelle D. Boone and Jessica Hua.
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important means to anticipating community- and 

ecosystem-level effects can be coarsely achieved by 

using an active ingredient’s chemical class, mode of 

action, and/or type (e.g. herbicide, insecticide, metal) 

to make predictions concerning the potential influence 

on natural systems.

By considering a contaminant through a categorical 

lens, some general principles can be reached. For 

example, Boone (2008) evaluated if combinations 

of insecticides with a different or the same mode of 

action were more or less likely to have additive or 

nonadditive effects on metamorphosis; in this study, 

aquatic environments containing two insecticides that 

were acetylcholinesterase inhibitors were more likely 

to have nonadditive effects than if the two insecticides 

had a different mode of action. Such approaches can 

improve our ability to anticipate effects of chemical 

mixtures, which are common in environments. 

Further, for contaminants that are well studied like the 

insecticide carbaryl (e.g. Boone et al., 2004, 2007; 

Zippel & Mendelson, 2008), the herbicides atrazine 

(Rohr & McCoy, 2010) and glyphosate (e.g. Relyea, 

2005), and the metal mercury (e.g. Bergeron et al., 

2011), the effects found in an array of studies from lab 

to field for these contaminants can offer insight for the 

ecological effects of contaminants with a similar mode 

of action or of a similar type/characteristic if we know 

that contaminants from similar classes and types have 

similar effects.

Data are beginning to suggest that chemical types 

and classes do have generalizable consequences. 

To evaluate chemical classes, Shuman-Goodier 

and Propper (2016) found effect sizes for swim 

speed and activity in fish and amphibians were 

similar for contaminants within the same chemical 

class. Using a meta-analysis, Egea-Serrano et al. 

(2012) determined that types of contaminants had 

different effect sizes across amphibian responses, 

suggesting that some contaminant types were more 

likely to have negative effects. Kerby et al. (2010) 

compared the sensitivity of amphibians via LC50s 

(lethal concentration of 50% of the population) with 

other taxonomic groups to contaminants based 

on chemical class and found amphibians had 

moderate to low sensitivity to pyrethroid, carbamate, 

organophosphate, and organochlorine pesticides; 

heavy metals; and inorganics relative to other groups; 

however, amphibians appeared to have higher 

sensitivity to phenols than other taxa. Evaluating 

sensitivity by chemical class or type is a useful way 

to infer contaminant categories that may be of more 

concern than others. Rumschlag et al. (2019) found 

that pesticides with the same chemical class or type 

(e.g. insecticide or herbicide) had similar impacts on 

amphibian host-trematode parasite communities, and 

Rumschlag et al. (2020) demonstrated that community 

structure and ecosystem function were impacted 

similarly based on a pesticide’s effect through direct 

and indirect pathways. These studies suggest 

that based on class or type, we can expect some 

generality to contaminant effects, and we should be 

able to predict more complex ecological outcomes in 

systems based on direct effects at different trophic 

levels. These approaches offer a means of under-

standing contaminant impacts in natural systems so 

that we can minimise contaminant effects that can 

directly and indirectly impact species of concern, 

like amphibians, even without exhaustive studies for 

each particular contaminant.

Direct effects

Physiological

Extensive research has found that contaminant 

exposure at ecologically relevant concentrations 

can impact amphibian physiology in a myriad of 

important ways, from non-monotonic (a dose-re-

sponse relationship characterised by a U-shaped 

or inverted U-shaped curve across increasing 

doses; Lagarde et al., 2015) modulation of stress 

hormones like corticosterone (Larson et al., 1998; 

McMahon et al., 2011), to altered cardiac function 

(Jones-Costa et al., 2018; Palenske, Nallani & 

Dzialowski, 2010), to the disruption of endocrine 

axes (including the feedback loops between 

hypothalamic-pituitary-adrenal axis or hypothalam-

ic-pituitary-thyroid components of the endocrine 

system; Thambirajah et al., 2019; Trudeau et al., 

2020), to immunomodulation (e.g. Forson & Storfer, 

2006; McMahon et al., 2011), to impaired neuronal 
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function (Sparling et al., 2010) or altered metab-

olism (Burraco & Gomez-Mestre, 2016). Moreover, 

contaminants have also been shown to be 

genotoxic (Maselli et al., 2010; Patar et al., 2016), 

and the damage caused to the DNA may potentially 

affect gene expression and lead to mutation-based 

diseases. One of the most commonly used 

pesticides in North America, the herbicide atrazine, 

has been shown to reduce size at metamorphosis, 

diminish immune function, and modulate gonadal 

morphology, impacting spermatogenesis and sex 

hormone production (Hayes et al., 2002; Rohr & 

McCoy, 2010; Vandenberg et al., 2012). Indeed, 

atrazine exposure can cause feminization in genetic 

male frogs (Hayes et al., 2002; Hayes et al., 2010; 

Rohr & McCoy, 2010), altering their overall fitness. 

Chlorothalonil, one of the most commonly used 

synthetic fungicides in North America, impacts 

immune response and degrades tadpole liver 

tissue in a non-monotonic fashion (McMahon et al., 

2011). The severity of impact of contamination on 

amphibian physiology is also altered by timing of 

exposure (e.g. Rohr et al., 2013). Early life exposure 

is often, but not always, more detrimental than late 

life exposure. Additionally, there is evidence that 

the impact of contaminant exposure on physiology 

impacts the successive generations, as well. For 

example, male Xenopus tropicalis exposed to 

pesticides had reduced fertility due to endocrine 

disruption, were smaller in size, and their offspring 

had decreased plasma glucose levels (Karlsson 

et al., 2021). Many studies with amphibians do 

not examine physiological responses, but for 

those that do, effects appear to be commonplace 

(Thambirajah et al., 2019), suggesting biochemical 

changes that can have long-term effects are an 

important avenue for future research.

Carryover effects

Exposure to a contaminant has the potential to 

result in acute effects; understanding those effects 

and their ramifications can help managers minimise 

or mitigate the consequences. Yet even more perni-

cious are the effects that have consequences well 

after exposure, making short-term toxicity studies 

less useful in predicting effects in natural systems; 

further, effects that occur well after exposure make 

establishing cause-effect linkages challenging. 

Long-term effects stemming from conditions earlier 

in life are carryover effects. Carryover effects 

can occur when a contaminant has an obvious 

short-term effect with the consequences persisting 

or when a contaminant has no observed effect at 

exposure with impacts appearing later in life after 

exposure has ended (O’Connor et al., 2014).

For instance, if contaminant exposure results in 

smaller size at metamorphosis in amphibians, then 

future fecundity, time to reproduction, and survival 

in the terrestrial environment (i.e. fitness) can be 

impacted (e.g. Altwegg & Reyer, 2003; Chelgren et 

al., 2006; Earl & Whiteman, 2015; Scott et al., 2007) 

even though contaminant effects may have been 

acute. Many contaminants affect endpoints corre-

lated with fitness, through either direct chemical 

effects or indirect effects through changes in the 

food web (e.g. Relyea & Diecks, 2008). It follows 

that any contaminant that alters these critical 

endpoints have a higher probability of impacting 

future responses via carryover in ways that affect 

populations. Currently, studies that have followed 

amphibians after contaminant exposure early in 

development have found that carryover effects 

from acute exposures can have lasting effects 

on terrestrial growth and overwintering for some 

species and not for others (Boone, 2005; Distel & 

Boone, 2010).

Carryover effects from contaminant exposure in 

early life can also appear later in life despite no 

apparent effects immediately after exposure via 

altered physiology, behaviour, or gene expression 

(O’Connor et al., 2014). For instance, while 

negative chemical effects were not apparent in 

anurans reared in wastewater treatments relative to 

controls, terrestrial growth was reduced for those 

from wastewater, suggesting a metabolic cost of 

exposure was not apparent until later in devel-

opment (Zeitler, Cecala & McGrath, 2021). Similarly, 

Rohr and Palmer (2005) found that the herbicide 

atrazine unexpectedly increased terrestrial desic-

cation risk in salamanders through altered activity 
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months after larval exposure. Delayed effects, like 

acute ones, are important because they can reduce 

survival, fertility, and growth; therefore, delayed 

carryover effects are critical to understand. 

Contaminants that result in biochemical changes, 

such as changes in hormones for example thyroid 

hormones (Thambirajah et al., 2019), stress 

hormones (Bókony et al., 2021; Davis et al., 

2020), sex hormones (Hayes, et al., 2010), or gene 

expression (e.g. Hinther et al., 2011; Zhang et al., 

2019) may be more likely to have carryover effects. 

Carryover effects appear to be a common, under-

studied consequence of contaminant exposure 

(Bergman et al., 2013; Edwards & Myers, 2007). 

Surprisingly, some carryover effects are positive: 

prior exposure to a contaminant can lead to greater 

tolerance to other stressors later in life, potentially 

through induction of a generalised stress response 

(Billet & Hoverman, 2020; Hua, Morehouse & 

Relyea, 2013). However, general patterns have not 

yet been identified.

Carryover effects can also include those that cross 

generational boundaries—an area of research that 

offers many opportunities for discovery, given 

that the currently available data are quite limited. 

In particular, endocrine-disrupting chemicals 

(including phthalates, bisphenol A, microplastics 

pharmaceutical and personal care products, and 

persistent environmental contaminants like PCBs) 

are likely to have transgenerational impacts (Brehm 

& Flaws, 2019; Schwindt, 2015; Zhou et al., 2020). 

For instance, Karlsson et al. (2021) demonstrated 

that exposure of males to an anti-androgenic 

pesticide (linuron) resulted in effects across two 

generations in anurans. Additionally, maternal 

mercury exposure in anurans had negative effects 

on growth and survival in the next generation of 

tadpoles through maternal transfer of mercury 

(Bergeron et al., 2011), suggesting that contam-

inants that bioaccumulate in breeding females 

may have the potential to cross generational 

boundaries. Similarly, breeding pairs from agricul-

tural and urban ponds with high concentrations 

of endocrine-disrupting pesticides (Bókony et 

al., 2018) produced tadpoles and juveniles with 

lower growth rates and development. Endocrine 

disruption caused by pesticide exposure can affect 

subsequent unexposed generations, for at least 

two generations (Karlsson et al., 2021). Although 

there are few studies examining transgenerational 

impacts, current knowledge suggests that such 

effects may be common.

Carryover effects are understudied in amphibian 

ecotoxicology (as well as more broadly), and they 

have the potential to impact population health 

and persistence through time (O’Connor & Cooke, 

2015). While we have a good understanding of 

the consequences that follow for some responses 

(e.g. effects on time and size at metamorphosis; 

early life stress hormones), species variation 

may still undermine broad generalisations, which 

could become predictable with more study (Earl 

& Whiteman, 2015). Making cause-effect linkages 

remains a major challenge for contaminants that 

have carryover effects and calls for studies across 

the life cycle and through multiple generations.

Indirect effects

Given that freshwater systems are among the most 

biodiverse in the world (Dudgeon et al., 2006), 

predicting the cumulative effects of contaminants on 

amphibians is hampered by the myriad of possible 

indirect effects, mediated through and compounded 

by species interactions and food web structures. 

Despite the magnitude of the threat that contaminants 

impose on amphibians and freshwater systems 

(Bernhardt, Rosi & Gessner, 2017; Burton et al., 2017), 

indirect effects of contaminants are often overlooked 

by research communities and funding agencies. 

Classic toxicological lab-based experiments have 

documented scores of contaminants that can cause 

acute toxicity to organisms (Sparling et al., 2010), but 

they fail to predict complex suites of effects that can 

occur when contaminants enter freshwater systems 

(Bernhardt et al., 2017; Gessner & Tlili, 2016; Rohr, 

Salice & Nisbet, 2016). Contaminant-induced changes 

in behaviour, competition, and predation/grazing 

rates can lead to changes in abundance, richness, 

and/or composition of community members (Fleeger, 
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Carman & Nisbet, 2003; Hillebrand & Matthiessen, 

2009), which can impact amphibians via bottom-up 

and top-down trophic cascades (Fleeger et al., 2003; 

Hillebrand & Matthiessen, 2009). Advancements 

in replicated, field-based in situ, and mesocosm 

studies have offered a way to incorporate the 

complexity of multitrophic communities, so that the 

cumulative effects of contaminants on amphibians 

can be better evaluated.

Bottom-up indirect effects of contaminants alter food 

resources of amphibians. In the larval environment, 

alterations to algae can influence the survival and 

development of tadpoles. For instance, contaminants, 

including coal ash, fungicides, and herbicides, can 

decrease the abundance or alter the composition of 

phytoplankton and periphyton (Brock, Lahr & van den 

Brink, 2000; McMahon et al., 2012; Rowe, Hopkins 

& Coffman, 2001; Rumschlag et al., 2020). Top-down 

effects of contaminants alter the community of 

amphibian predators. Insecticides can reduce 

survival of predators (Schäfer et al., 2011), which 

can benefit amphibian larval survival and growth 

through a predator release (Rumschlag et al., 2020). 

Amphibian behaviour can also be directly impacted 

by contaminants, which can indirectly lead to altered 

predator-prey interactions. Sublethal concentrations 

of contaminants, including copper and insecticides, 

can reduce tadpole activity, increase rates of 

abnormal swimming, reduce escape responses, or 

inhibit detection of predator cues by tadpoles, leading 

to increased predation risk (Hayden et al., 2015; 

Polo-Cavia, Burraco & Gomez-Mestre, 2016; Sievers 

et al., 2019).

Contaminant-driven bottom-up and top-down effects 

can also alter transmission of parasites in amphibian 

populations by altering parasite exposure risk. For 

instance, in amphibian-trematode systems, triazine 

herbicides, organophosphate insecticides, and 

nutrients are linked with increases in snail abundance 

(first intermediate host) and thus trematode exposure, 

through increases in snail resources (periphytic algae, 

bottom-up effect) and changes to predator dynamics 

(top-down effect; Johnson & Chase, 2004; Rumschlag 

et al., 2019). In an amphibian-chytrid system, effects 

of contaminants on parasite exposure and load can 

be non-monotonic (McMahon, Romansic & Rohr, 

2013), demonstrating complexity in predicting effects 

of contaminants on parasite transmission.

Indirect effects of contaminants on amphibians and 

other community members have even been linked 

to ecosystem-level consequences (Halstead et al., 

2014). For instance, diverse arrays of insecticides can 

all lead to increases in primary productivity (through 

predation/grazing release) and ecosystem respiration 

through negative effects on larval salamanders 

and other zooplankton predators, which change 

zooplankton abundance and composition (Rumschlag 

et al., 2020).

The findings documenting the indirect effects on 

contaminants on amphibians highlight the need 

for a large-scale perspective in terms of ecology, 

community composition, and time. Amphibians do 

not experience chemical exposure in isolation, and 

therefore holistic research on the indirect effects 

of exposure is needed to understand the net 

ecological impact.

Evolutionary effects of contaminants

The call to incorporate evolutionary perspectives in 

our understanding of amphibian conservation and 

mitigation of amphibian declines was clearly articu-

lated more than a decade ago (Blaustein & Bancroft, 

2007). Indeed, since then, we have amassed ample 

evidence suggesting that amphibians can adapt in 

response to novel environmental conditions generated 

by pollutants (Brady, 2012; Cothran, Brown & Relyea, 

2013; Homola et al., 2019; Hua et al., 2015), although 

the ability to adapt depends upon the presence of 

resistant genotypes in the population. 

Additionally, in the last 15 years, our understanding 

of the various adaptive mechanisms driving 

responses to pollutants has markedly improved. 

For example, endocrine flexibility is a crucial 

coping mechanism in response to anthropogenic 

environmental change. Generally, corticosterone, the 

main amphibian glucocorticoid associated with the 

hypothalamic-pituitary-interrenal axis (HPI axis), is 
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predicted to be elevated with exposure to pollutants 

and other environmental stressors (Bókony et al., 

2021; Forsburg, Guzman & Gabor, 2021; Gabor, 

2018; Gabor et al., 2018; Goff et al., 2020; Hopkins, 

Mendonça & Congdon, 1997; Tennessen et al., 2018). 

Yet not all populations (mostly endotherms) show 

elevated glucocorticoids in urbanised populations 

(Injaian et al., 2020; Murray et al., 2019). Further, 

Bókony et al. (2021) found that tadpoles of Bufo from 

anthropogenic and natural habitats that were reared 

in common garden experiments had higher baseline 

corticosterone-release rates in urban ponds; however, 

tadpoles from urban and agricultural ponds showed 

an adaptive response by responding to stressors with 

a greater stress-induced change than tadpoles from 

natural habitats, indicating that tadpoles from anthro-

pogenic sites had a more efficient negative feedback 

(return to baseline). Collectively, these findings 

indicate the complexity of mitigating amphibian 

declines and suggest that more mechanistic studies 

may aid in exposing alternative methods for mini-

mizing the amphibian response to contaminants by 

decreasing application rate, changing the timing, or 

using different contaminants, even when the contami-

nants cannot be removed. 

While the adaptive response to pollutants provides 

an optimistic perspective to amphibian populations 

facing contaminant exposure, recognition that these 

adaptations can lead to costs is growing; examples 

include a reduction of fitness (Brady, 2012; Brady 

et al., 2019; Hua et al., 2015; Semlitsch, Bridges & 

Welch, 2000), and absence of protective co-tolerance 

effects to pollutants or natural stressors like predators 

and pathogens (Hua et al., 2016; Hua et al., 2013; 

Hua et al., 2013; Jones et al., 2021; Rumschlag et 

al., 2020). A number of advances in techniques to 

assess the evolutionary effects of contaminants on 

amphibians have been made, including traditional 

toxicity assays (e.g. time to death – TTD – assays, 

LC50s) to compare functional traits like tolerance 

across groups, physiological coping capacity assays 

that measure stress physiology and capacity to cope 

with pollutants and environmental change (reviewed 

by Narayan et al., 2019), and community metabar-

coding to study diversity of amphibian microbiomes, 

which has applications in disease mitigation and 

captive breeding for translocation purposes (Ficetola, 

Manenti & Taberlet, 2019).

Despite the growth in our understanding of evolu-

tionary effects of contaminants on amphibians, few 

studies have directly implemented evolutionary 

principles and evaluated these efforts to inform 

and facilitate amphibian conservation. Future work 

should consider designing and testing conservation 

strategies based on our understanding of evolutionary 

effects of pollutants on amphibians. These may 

include selective breeding, introduction of adaptive 

variants through translocations, ecosystem interven-

tions aimed at decreasing phenotype–environment 

mismatch, or genetic engineering (Pabijan et al., 

2020). Some challenges to consider include whether 

we should expose amphibians in captive breeding to 

stressors that can help habituate the HPI axis and/

or promote coping with unpredictable environments 

that they will experience if they are reintroduced to 

the wild. Similarly, we need to evaluate if we should 

engineer husbandry conditions that are similar to 

those in the wild to improve management outcomes 

(i.e. bioaugmentation techniques to initiate the 

establishment of healthy skin microbiotas in captive 

hellbenders prior to release; Kenison, Hernández-

Gómez & Williams, 2020).

While evolutionary responses may protect some 

amphibian populations from the effects of pollutants, 

other populations may not respond rapidly enough to 

cope with the pace of pollutant contamination even if 

genetic variation in resistance/tolerance exists in the 

population (Pabijan et al., 2020). Therefore, looking 

ahead, integrating evolutionary findings from the past 

15 years to develop and directly test evidence-based 

evolutionary principles to protect the most vulnerable 

amphibian populations will be imperative to our 

amphibian conservation efforts.

Interactions of contaminants with other 
environmental factors

While contaminants alone and in mixtures have 

been put forward as a potential cause for amphibian 

population declines and while contaminants can 
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theoretically cause local extinction (Willson et al., 

2012) or serve as habitat sinks (e.g. coal ash, Rowe 

et al., 2001), the interactive effects of contaminants 

with other natural and anthropogenic factors has 

long-been anticipated to result in deleterious effects 

(Blaustein et al., 2011; Carey & Bryant, 1995; Hayes 

et al., 2010).

With habitat degradation and alteration

Land-use/land-cover increases the risks of 

contamination:

Conversion of habitats to agriculture, residential, 

developed, and sub/urban lands can lead to 

increased contaminant exposures in the aquatic 

and terrestrial habitats used by amphibians (Sievers 

et al., 2018), which can directly affect amphibians, 

and which can alter and degrade the quality of 

the habitat in ways that create the potential for 

multiple stressors. While contaminant exposure 

in the environment is pervasive in protected areas 

with low human impact to areas of agricultural and 

industrial activity (Battaglin et al., 2016; Bókony 

et al., 2018; Hageman, 2006; van Dijk & Guicherit, 

1999), the likelihood of exposure is greater in some 

areas. Contaminants accumulate in water bodies, 

making these areas an important exposure pathway 

for amphibians with complex life cycles or living 

in areas near streams and wetlands (Battaglin et 

al., 2016; Bókony et al., 2018). Further, greater 

likelihood of contaminant exposure exists in aquatic 

habitats with concentration increasing dramatically 

for single contaminants and chemical mixtures 

(Anderson et al., 2013; Battaglin et al., 2016; Hayes 

et al., 2006) in both agricultural and protected 

areas (Sparling et al., 2015; Trudeau et al., 2020). 

Additionally, some types of agricultural techniques 

such as surface drainage ditches and subsurface 

tile drains contribute to habitat loss and transport 

pesticides, nutrients, and other contaminants into 

wetland habitats (Blann et al., 2009). Chemical 

mixtures increase the likelihood of effects (Hayes 

et al., 2006), which can ultimately reduce offspring 

fitness in amphibians (Bishop et al., 2010; Bókony 

et al., 2018; Semlitsch et al., 2000), but which can 

also lead to pesticide tolerance or resistance (e.g. 

Cothran et al., 2013; Hua et al., 2015) in ways that 

alter populations.

Contaminants as habitat degradation:

Ponds are natural features on the landscape and 

are often added by people for recreational or 

aesthetic reasons, or for their ability to remove 

sediments moving across the landscape or 

water across impervious surfaces (Davis et 

al., 2021; Gallagher et al., 2011; Monaghan et 

al., 2016; Renwick et al., 2005); both natural 

and human-made ponds are readily used by 

amphibians. Yet, environmental contaminants in 

these water bodies represent a form of habitat 

degradation. Ponds on human-dominated 

landscapes like golf courses, agricultural areas, 

parks, or multi-residential properties are more 

likely to be chemically managed to control algal 

or plant overgrowth, which can increase exposure 

risks to amphibians and influence population 

persistence (Sievers et al., 2018). For instance, 

golf courses manage water features for aesthetics 

and are impacted by fertiliser and pesticide 

runoff with occasional application of chemicals 

like copper sulphate directly to ponds to reduce 

algal and plant growth, which can also be toxic to 

amphibians (Puglis & Boone, 2012). Use of pond 

dyes has become more common in residential 

and urban ponds as a means of reducing algal 

growth; effects have not been found to have direct 

impacts on amphibian metamorphosis, but such 

management practices change the food web, 

reducing algal and zooplankton food resources 

for amphibians (Bartson et al., 2018; Suski et al., 

2018). Chemical exposure that reduces emergent 

vegetation can also impact the quality of a site 

for breeding and larval development via reduced 

cover and increased vulnerability to predators 

(Shulseet al., 2010), although the direct and 

indirect consequences can make predicting 

outcomes difficult (Edge et al., 2020). The effect of 

contaminants on habitats can alter the quality of 

habitat, which can have population- and commu-

nity-level repercussions, and which may not be 
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obvious from traditional toxicological studies 

(e.g. LC50s in single species tests). Physiological 

and behavioural studies provide mechanisms for 

documenting systems in decline, especially in 

habitats that are experiencing conversion, before 

environmental stressors can be mitigated (Walls & 

Gabor, 2019).

While terrestrial buffers are mandated, for instance, 

in some areas near streams to reduce habitat 

degradation from nutrient runoff and soil erosion in 

waterways, they are generally not required around 

small temporary or permanent ponds often used by 

amphibians for breeding and larval development. 

Terrestrial buffers can promote contaminant and 

nutrient filtering from ponds (Cole, Stockan & 

Helliwell, 2020; Mayer et al., 2005; Muscutt et al., 

1993; Skagen, Melcher & Haukos, 2008) and also 

serve as key upland habitats for terrestrial species 

or life stages (Semlitsch & Bodie, 2003). Physical 

habitat structure may also intercept aerial depo-

sition of contaminants that may physically/directly 

impact amphibians in terrestrial habitats and can 

offer a solution to minimise contaminant impacts on 

water quality and on the species that live there.

Land-use/Land-cover influences environmental 

conditions and can interact:

With contaminant exposure

Land-use/land-cover changes alone have dramatic 

impacts on populations and communities, and 

amphibians can be affected by the interaction of 

habitat characteristics and contaminant exposure 

in ways that lead to the co-occurrence of environ-

mental characteristics (e.g. Faulkner, 2004; Renick 

et al., 2015). For instance, loss of surrounding 

forest habitat can reduce leaf litter inputs and, 

thus, dissolved organic carbon that attenuates 

UV radiation; because some contaminants are 

more toxic in the presence of UV, changes in UV 

penetration can influence how toxic the same 

environmental concentration of a contaminant is 

and directly impact amphibian growth and survival 

(Puglis & Boone, 2011; Roberts, Alloy & Oris, 2017). 

Conversion of forest to rangeland can have impacts 

at a larger landscape scale and can interact with 

the resulting consequences, which may include: 

reduction in emergent vegetation in ponds used 

for egg laying and predator protection of larvae; 

diminished quality of the terrestrial habitat for 

juvenile and adult growth and survival; changes 

in the hydroperiod of the wetland (which may be 

lengthened for cattle watering or shortened for 

planting); altered aquatic food webs resulting in 

changes in food availability and predators abun-

dance; and reduced water quality (Moges et al., 

2017; Tilman, 1999). The addition of a contaminant 

that lengthens larval period in a habitat that has a 

shortened hydroperiod because of agricultural tiling 

or draining, for instance, can reduce recruitment of 

juveniles into the adult population, as Relyea and 

Diecks (2008) found for anurans reared in drying 

experimental ponds exposed to the insecticide 

malathion. Additionally, land use changes that 

impact water quality may result in algal blooms and 

higher water temperatures that spur management 

by land managers or residents. For instance, Goff 

et al. (2020) found that water quality and land 

cover type affected the physiological and bacterial 

diversity of ornate chorus frogs (Pseudacris ornata), 

thus affecting the overall population health. In this 

way, land-use and land-cover changes can alter a 

number of abiotic and biotic factors and interact 

with contaminant exposure to impact development 

and physiology of individuals, which can have 

acute and long-term consequences.

The potential for interactive effects of contaminants 

is illustrated in two field studies. The threatened 

Jollyville Plateau salamander (Eurycea tonkawae) 

is a fully neotenic stream dwelling species found in 

central Austin, Texas, USA. This species is on the 

United States Endangered Species List because 

of threats from urbanization; indeed, counts of this 

species declined more in areas with the largest 

residential development than less developed areas 

throughout the species range (Bendik et al., 2014). 

In a follow-up study exploring the mechanisms 

associated with declines, Gabor et al. (2018) found 

that in two out of three years, salamanders from 

streams in more developed watersheds released 



Threats Chapter 4. Ecotoxicology: amphibian vulnerability to chemical contamination

100 amphibian conservation action plan: a status review and roadmap for global amphibian conservation

higher corticosterone (an endocrine hormone 

associated with the stress axis) than salamanders 

from populations in preserves. Corticosterone levels 

were also higher in urban streams than in rural ones. 

Positive feedback between stream background 

corticosterone and baseline corticosterone may 

account for the higher corticosterone release rates 

found for E. tonkawae in urban streams, because 

amphibians can uptake exogenous corticosterone 

through their skin (Glennemeier & Denver, 2002). 

Because urban catchments are associated with 

septic systems and sewer lines, exogenous corticos-

terone from these systems plus runoff will continue 

to plague amphibians within these catchments. 

Further, Davis et al. (2020) found that salamanders 

located in agricultural wetlands compared to 

reference wetlands had higher ranavirus infection 

loads and higher corticosterone release rates. At 

the same time, corticosterone release rates were 

higher in ranavirus infected salamanders. Together, 

these results indicate that amphibians are being 

hit by multiple stressors, which likely increase the 

rates of amphibian declines. These studies show the 

usefulness of using water-borne corticosterone as one 

mechanism by which habitat impacts on amphibian 

population health can be measured in the field.

With disease

Given the important role disease has played 

in amphibian population declines (Scheele et 

al., 2019; also see Chapter 6) — particularly 

ranaviruses and the amphibian chytrid fungi 

(Batrachochytrium dendrobatidis [Bd] and B. 

salamandrivorans) — and given that disease 

pathogens and contaminants are distributed 

across space while disease outbreaks appear 

more localised, the potential for disease by 

contaminant interactions is of critical importance 

(Blaustein et al., 2018). Because contaminants 

have a wide range of modes of actions, they have 

the potential to affect pathogens, hosts, or their 

interaction, which can alter disease dynamics 

and could explain the range of observed effects 

in experiments and natural systems (Blaustein et 

al., 2018). In experimental studies, the presence 

of contaminants may not alter the susceptibility of 

amphibians to a pathogen (as some studies have 

found, e.g. Buck et al., 2015; Gaietto, Rumschlag 

& Boone, 2014; Kleinhenz, Boone & Fellers, 2012) 

or it can increase susceptibility (e.g. Cusaac et 

al., 2021; Rohr et al., 2013; Wise, Rumschlag 

& Boone, 2014), and these differences may be 

attributed to life stage exposure and species/

population susceptibility. Field studies find asso-

ciations between host-pathogen relationships and 

environmental contamination, although the type 

of contamination or effect may vary among study 

systems. For instance, King et al. (2010) found 

parasite infection risk was greater for anurans in 

polluted habitats, but risk varied with land cover 

in the landscape. Battaglin et al. (2016) found that 

frogs at field sites across the USA were more likely 

to be positive for Bd at sites with higher fungicide 

concentrations in water and sediments, and with 

more dissolved organic carbon, total nitrogen, 

and phosphorus in the water. Reeves et al. (2017) 

found Bd zoospore abundance was negatively 

associated with neonicotinoid concentration in 

wetlands in Iowa, USA. 

Rumschlag and Rohr (2018) found herbicide use 

was associated with low Bd infection prevalence 

in larval aquatic habitats and high infection 

prevalence in post-metamorphic terrestrial 

habitats. Further, populations exposed to salt 

runoff had slightly more frequent ranavirus-related 

mass mortality events, more lethal infections, and 

117-times greater pathogen environmental-DNA 

(Hall et al., 2020). Generally, the presence of 

contamination in environments is associated 

with increased likelihood of pathogen/parasite 

infections in some systems in ways that are not 

currently predictable.

Anticipating how contaminants will impact 

pathogen-amphibian dynamics is difficult because 

underlying mechanisms determining these 

interactions are not well understood, because 

non-monotonic responses result with exposure to 

some contaminants (e.g. endocrine disruptors), 

and because amphibian populations/species (e.g. 

Hoskins & Boone, 2017; McMahon et al., 2011, 
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2013; Rohr & McCoy, 2010) and pathogens (e.g. 

Bd; McMahon et al., 2011) vary in response to 

contaminants. Yet, a promising research avenue 

for predicting pathogen-contaminant interactions 

is the examination of contaminant effects on 

immunomodulation (Hayes et al., 2006; McMahon 

et al., 2011) and on antimicrobial skin peptides or 

other defences that can prevent infections (McCoy 

& Peralta, 2018; Rollins-Smith et al., 2002). For 

instance, Davidson et al. (2007) found that an 

insecticide impacted the ability of anuran skin 

peptides to reduce Bd growth in vitro. Because 

pollution and other environmental conditions 

can influence the skin and gut microbiomes that 

can compromise an amphibian’s ability to fight 

disease pathogens, contaminant effects on the 

amphibian host microbiome are likely an important 

mechanism influencing disease dynamics (McCoy 

& Peralta, 2018).

Contaminants can also alter the environment in 

ways that increase susceptibility to pathogens 

even if the contaminants themselves do not directly 

impact amphibians. For instance, Johnson et 

al. (2007) found that trematode infections were 

increased in amphibians through eutrophication of 

systems via nutrient runoff; in this way, contami-

nants can change the system to favour pathogens 

and increase infection rates. There are many 

ways that contaminants can alter the environment 

through changes in abiotic conditions or physical 

structure, or in the biotic community that could alter 

host-pathogen systems. For example, if contam-

inants can alter the abundance of microscopic 

aquatic predators that feed on infective stages 

of trematode parasites or Bd zoospores, they 

could influence infection prevalence and disease 

dynamics (Schmeller et al., 2014). Additionally, 

indirect effects of contaminant exposure can 

increase disease risk by increasing the abundances 

of intermediate hosts of pathogens in the envi-

ronment or through slowing host development in 

stages especially vulnerable to infection (Halstead 

et al., 2014; Rumschlag et al., 2019). These inter-

actions can be complex with outcomes mediated 

by host species, host and pathogen quality, and 

environmental properties.

Given that disease-causing parasites and path-

ogens are on the rise (Scheele et al., 2019), deter-

mining which factors can increase the likelihood of 

disease outbreaks is critical; current data suggest 

contaminants may be an important cofactor, yet 

there are thousands of chemicals that occur at 

different concentrations and that have divergent 

properties, creating a Russian roulette scenario 

in natural systems. Rumschlag et al. (2019) found 

that pesticide class predicted effects on trematode 

parasites and their hosts in aquatic communities, 

which offered some general conclusions that could 

be applicable to other areas. Such studies offer a 

powerful approach that provides predictive power 

to better shape both management and policy in 

ways that reduce the likelihood that contaminant 

exposure will lead to catastrophic disease 

outbreaks that negatively impact amphibian popu-

lations and species.

With climate change

The IPCC (2013) predicts changes in temperature 

and precipitation patterns across the globe, 

including shifts in average temperatures and 

increases in extreme climatic events (Diffenbaugh & 

Ashfaq, 2010; Schär et al., 2004; see also Chapter 

3). Understanding how contaminants will impact 

amphibians in a climate change scenario is a major 

challenge for amphibian conservation. Temperature 

can alter amphibian susceptibility to contaminants, 

but its effects are chemical dependent. Some 

studies find that higher temperatures can decrease 

sensitivity to pollutants, such as copper sulphate 

(Chiari et al., 2015) and atrazine (Rohr, Sesterhenn 

& Stieha, 2011). In contrast, other studies report 

that increasing temperature results in greater 

toxicity, including endosulphan, carbaryl, methomyl 

and pyrethroid insecticides (Boone & Bridges, 

1999; Broomhall, 2002; Lau, Karraker & Leung, 

2015; Materna, Rabeni & Lapoint, 1995). It is clear 

that interactive effects between contaminants and 

temperature exist and understanding the mecha-

nisms by which pollutants and temperature interact 

is important (similar to Burraco & Gomez-Mestre, 

2016) to develop effective conservation strategies.
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Further, climatic instability/unpredictability may also 

prompt amphibians to experience lower tempera-

tures if reproduction events are prematurely cued 

(i.e. a false spring; Parmesan, 2007). Exposure to 

cold temperatures during embryonic stages can 

negatively affect amphibians by increasing tadpole 

susceptibility to pollutants (Wersebe et al., 2019). 

Similarly, phenological shifts that expose breeding 

amphibians to freezing conditions can have 

cascading consequences on offspring ability to 

tolerate pollutants (Buss, Swierk & Hua, 2021).

Contaminants could also alter adaptive traits 

(morphological, physiological and behavioural) that 

are crucial for species to cope with climate change. 

In the past 15 years, our knowledge on amphibian 

thermal physiology traits has grown significantly 

(Duarte et al., 2012; Gutiérrez-Pesquera et al., 

2016; Katzenberger et al., 2021; Sunday et al., 

2014). Contaminant effects on traits related to 

thermal physiology appear to be species- and 

chemical-dependent. Katzenberger et al. (2014), for 

instance, found that the herbicide Roundup® did 

not affect the critical thermal maximum (CTmax), 

but it changed the shape of the thermal perfor-

mance curve; in contrast, Quiroga et al. (2019) 

found that tadpoles exposed to the insecticide 

chlorpyrifos showed a significant decline in CTmax 

but not in CTmin.

Currently, we have insight on how a few chemicals 

impact amphibians, but the vast majority remains 

untested and generalisations are difficult. An 

important and straightforward step would be to 

determine how toxicity of common contaminants 

changes with temperature for critical components 

of the food web (i.e. from reports like Aronson et al., 

1998), which would improve our ability to mitigate 

deleterious effects in ecological systems.

Priorities in research

Amphibian ecotoxicological research has exploded 

in recent decades (Sparling et al., 2010) – assessing 

across scales from basic individual toxicity in the 

laboratory to ecologically relevant community-level 

questions in outdoor mesocosms and field enclo-

sures, to landscape-level system questions. While 

research originally focused on mortality, it has now 

expanded to include responses across life stages 

(metamorphosis through to adult life stages), physio-

logical responses such as endocrine and reproductive 

system modulation, and changes in behaviour, physi-

ology, and genomic expression. Because amphibians 

are experimentally tractable across life stages, they 

can serve as models for understanding the effects of 

contaminants in natural environments. The two key 

research areas for amphibian conservation related to 

pollution should focus on issues that will, first, protect 

populations in the wild that are impacted by contam-

inants and that will, second, improve regulatory data 

collection to better protect natural systems.

Population declines and amphibian conservation

We know amphibian populations are experiencing 

worldwide declines with no clear global explanation 

(Grant et al., 2020, 2016) and that contaminants are 

pervasive (e.g. Battaglin et al., 2016; Gibbs, MacKey 

& Currie, 2009). To understand the role contaminants 

play in declines and in systems not experiencing 

declines, we need to focus on the ecological ramifica-

tions of contaminant exposure. We achieve this focus 

by identifying the important factors that interact with 

contaminant exposure to impact traits associated with 

amphibian fitness; these factors likely include habitat 

change, disease, and climate change, factors which 

are additional stressors in communities already expe-

riencing naturally occurring competition, predation, 

and physiological stressors. We need to conduct 

experiments that examine exposure at multiple time 

points and that span life stages of diverse amphibian 

species because of the wide variety of life history 

strategies utilised by Amphibia. Biases in geography, 

ecosystems, life stages, and species of study creates 

a risk that we reach general conclusions that will not 

be reality-based, particularly given that some species 

and areas experiencing population declines are not 

those that have been the most extensively studied 

(Leaning, 2000; Trimble & van Aarde, 2012). Schiesari 

et al. (2007) found that while the majority of amphibian 

declines have taken place in the tropics, most studies 
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were conducted on temperate systems using a small 

number of mainly temperate species. Hence, bioge-

ographical and taxonomic biases can and should be 

addressed, at least partially, by including amphibians 

in routine federal toxicity testing, using native species 

from around the world.

Ecotoxicological studies for amphibian 

conservation

Traditional toxicological studies for regulatory 

purposes do not explicitly include amphibians, 

which is problematic given the role contaminants 

likely play in the amphibian biodiversity crisis, as 

outlined in this chapter. Yet, traditional toxicological 

approaches (e.g. LC50s) may not provide us with the 

information we need to protect this taxonomic group. 

Short-term studies often do not link exposure effects 

to critical traits correlated with fitness or to population 

dynamics, yet they are a good place to begin particu-

larly in systems where there is little baseline data 

(e.g. many tropical systems). To determine long-term 

consequences of contaminant exposure, we need 

studies that examine consequences of exposure 

across life stages (i.e. carryover effects) and we need 

to use empirical data to parameterise population 

models to examine population viability in light of 

contaminant effects in complex communities (Willson 

et al., 2012). Linking responses that may happen 

with exposure (e.g. biomarkers like corticosterone; 

Gabor et al., 2018) to consequences later in life, offers 

promise to predict future consequences. Further, 

natural systems are more complicated and include 

contaminant mixtures and multiple potential stressors, 

so studies are needed that incorporate chemical and 

natural complexity and that can be paired with natural 

field studies (e.g. Hayes et al., 2003; Rohr et al., 

2008a, 2008b), which enable us to make meaningful 

and powerful inferences. Such experiments can be 

logistically complicated, yet they are essential to 

establish cause-effect relationships and to evaluate 

the likelihood of additive or nonadditive effects. 

Many regulatory agencies in the US or Europe do 

not go beyond laboratory studies, but laboratories 

do not typically mimic systems - mesocosm or field 

studies are needed to do this (e.g. Halstead et al., 

2014) - and when experimental field conditions match 

natural systems, their results yield predictive power 

(e.g. Boone et al., 2004; Kidd et al., 2007). Complex 

ecotoxicology studies will be more easily achieved 

if chemical classes and types allow predictability, as 

the data currently suggest (Rumschlag et al., 2019, 

2020); for then, a representative chemical can be used 

to explore interactions with other factors, across life 

stages, and general conclusions can be made for a 

suite of contaminants, which will help address the 

regulatory challenges associated with contaminant 

testing and regulatory delay.

Solutions for mitigating contaminant effects: 
Activities and opportunities

Considering that contaminant effects are well-doc-

umented, are associated with amphibian population 

declines (Davidson et al., 2002), are predicted to 

interact with other stressors (see above), and are 

predicted to cause declines when they affect survival 

(e.g. Willson et al., 2012), there are many reasons to 

reduce contaminant exposure in natural systems. 

Hence, stronger federal policies, improved and 

implemented conservation strategies, and individual 

actions can reduce the risk of amphibians’ exposure 

to contaminants.

Policy

Environmental contaminants are pervasive largely 

because environmental policies (or lack thereof) 

support this outcome. As such, effective policies 

are the most important way through which exposure 

can be reduced. Given that contaminants move 

through food webs, atmospheric drift, and the water 

cycle, one or a few countries with poor policies 

can lead to global distribution of contaminants. 

However, contaminant release may at times be 

necessary for society or inevitable to meet national 

or global needs. The question of policy relates to 

societal decisions of assessing when benefits justify 

the environmental and health costs, which can 

be difficult to answer without adequate scientific 

evidence and transparent public discussions that 
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are not obfuscated by misleading information from 

industry (e.g. Oreskes & Conway, 2010).

For instance, the herbicide atrazine increases crop 

yields by < 6% at best and many reviews suggest 

average yields improve 1-3% (Ackerman, 2007). 

Atrazine is known to alter food webs by impacting the 

lowest trophic levels and, perhaps even more signif-

icantly, results in endocrine disruption across taxa 

(Hayes et al., 2011); however, atrazine’s manufacturer 

works to muddle these results from influencing public 

policy and regulation in the USA (Boone et al., 2014; 

Hayes, 2004; Rohr, 2021) by attacking scientists 

(e.g. Aviv, 2014) and funding/influencing research 

that disproportionately produces studies showing no 

effects of atrazine (Hanson et al., 2019; Hayes, 2004). 

Is this an example of good policy where benefits 

disproportionately outweigh the costs or an example 

of the disproportionate influence of industry slowing 

regulatory processes (sensu Oreskes & Conway, 

2010)? For amphibians, the weight of evidence 

suggests that there are significant costs to this policy 

that leads to widespread atrazine contamination 

of aquatic habitats (e.g. Rohr & McCoy, 2010), and 

the example of the regulatory process of atrazine is 

exceptional only in that the role of industry to slow the 

regulatory process has been well documented and 

publicised. Better policy that limits the role of industry 

in the experiments used to inform regulatory decisions 

could lead to better policy in the USA and other 

nations (Boone et al., 2014).

A policy of precaution, which is more pervasive in 

Europe, would also decrease the exposure risks to 

single chemicals and chemical mixtures, both of 

which increase the probability of biological effects 

and the interactive effects that result from interactions 

with other contaminants and environmental factors. 

However, for precaution to be an option, accurate 

predictions about how diverse contaminants will 

affect species and food webs are necessary. Towards 

this goal, while a wealth of data exists for amphibians 

and other taxa for a few contaminants, there are 

thousands of other regulated contaminants for which 

relatively little data exist. Looking ahead, expanding 

our understanding to include more contaminants and 

their potential interactions based on more general 

chemical properties or classes is an area of research 

that needs to be greatly expanded to allow informed 

decision-making or to adequately apply precaution. 

With more rigorous policy devoid of industrial influ-

ences, society and natural systems would reap more 

benefits from the trade-offs between pesticide use 

and restraint than they currently do.

Conservation strategies

Even in the absence of policies that reduce contam-

inant release, strategies exist that can diminish the 

likelihood of exposure or the concentration to which 

systems are exposed (e.g. Smith & Sutherland, 2014) 

which influences the direct and indirect consequences 

experienced by organisms. Terrestrial buffers around 

aquatic habitats absorb nutrient and chemical contam-

ination in runoff, and slow the rate of movement, which 

can reduce exposure risk (see above). Policy that 

requires adequate habitat to surround aquatic envi-

ronments could have a number of benefits including 

improved water quality and (potentially) flood control, 

which would benefit amphibians and a host of other 

taxa (including humans); however, buffer characteristics 

will vary across systems and are difficult to standardise 

(Kuglerová et al., 2014; Luke et al., 2019) with more 

known about riparian buffers than pond buffers. 

Terrestrial amphibians and terrestrial life stages are 

also vulnerable to contaminants (Brühl, Pieper & 

Weber, 2011; Brühl et al., 2013; James & Semlitsch, 

2011), and could benefit from terrestrial buffers 

around terrestrial habitats.

Societal calls for minimising environmental exposures 

to contaminants would benefit a host of species, 

including amphibians and humans. Reducing 

contaminant use by, for instance, accepting some 

agricultural losses to pests while using practices that 

benefit natural pest-predators provides effective and 

environmentally friendly approaches to achieve pest 

reduction without chemical pollution. In fact, some 

research suggests that organic techniques produce 

yields similar to conventional agriculture without 

the chemical footprint (Ponisio et al., 2015) and that 

enhancing the diversity of agricultural systems offers 

ecosystem services without a loss in yield (Tamburini 
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Table 4.1: A summary of the research gaps highlighted in the 2007 ACAP update and current state of research on each of these gaps. The
traffic light colour scheme represents research gaps that have received relatively more attention to less attention in the past 30 years. In the 
last decades, we have made substantial progress on addressing the research gaps highlighted in the 2007 ACAP. For each of the gaps 
highlighted in the 2007 ACAP, we highlight areas in need of further investigation (in bold).

Research gaps from ACAP 2007 Current status

Research is needed that goes beyond traditional toxicity 

testing by understanding complex chemical mixtures in 

complicated natural environments.

In the last 30 years, by integrating multiple toxicological 

techniques (lab to mesocosm to field), we have made 

substantial progress on understanding the complex direct 

and indirect effects of contaminants on amphibians. 

Studies have also worked to understand the interactive 

effects of complex contaminant mixtures. However, given 

the multitude of possible contaminant mixtures, we are 

still missing critical information that will allow us to make 

predictions about complex chemical mixtures in natural 

environments. Towards this goal, future efforts that 

integrate experimental and predictive modelling 

efforts remain an important priority.

Few studies have addressed physiological or genetic 

adaptation to chemical exposure, or how these adaptations to 

a chemical stressor may influence population persistence or 

make individuals vulnerable to other factors

In the last 30 years, research has worked to address 

our understanding of the physiological and evolutionary 

effects of contaminants as well as costs of responding 

to contaminants (see Physiological effects and 

Evolutionary effects). However, we are still missing 

critical information to allow us to assess how these 

adaptations may influence population persistence or 

their relative contribution of mitigating contaminant-

induced declines.

We do not understand how contaminants may influence 

populations through time at multi-generational scales.

In the last 30 years, some efforts have been made to 

address multi-generational effects of contaminants though 

this remains a research gap and this update includes 

two sections that address this point (See Carryover 

effects and Evolutionary effects).

Examining the interactive effects of contaminants, disease, 

pathogens, global change, and habitat alteration will be 

instrumental to planning mitigation measures to thwart 

declines.

In the last 30 years, addressing interactive effects of 

contaminants appears to have been a research priority, but 

this remains a central gap and major focus of this 

update (see Interactive effects section).

Although much has been learned in recent years about 

the effects of a few contaminants (e.g. pesticides, coal 

combustion wastes), little is known about the effects of most 

other common pollutants on amphibians.

While we have made progress in expanding our 

understanding to more emerging contaminants (e.g. road 

salts, PFAS, microplastics, light pollution etc.), there are 

many other contaminants that are not well studied. 

Understanding the impacts of chemical classes is a 

way to predict the effects of new chemicals that enter 

the market and is important baseline information that 

is needed. There is a need to consider not only the 

direct effects of these various contaminants but also 

their indirect effects.
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et al., 2020). Further, reducing the use of contaminants 

to maintain public gardens and lawns in residential 

areas could also reduce contaminant inputs into natural 

systems given that homeowners use 10 times more 

pesticides per acre than farmers (Meftaul et al., 2020). 

When the use of chemicals is unavoidable, such as 

when controlling the vectors of a zoonosis (e.g. Aedes 

aegypti, the mosquito responsible for spreading yellow 

fever, dengue fever, chikungunya, Zika fever, among 

others), their application should be accompanied by 

non-chemical actions (including population education) 

that add to the desired effect and help reduce the 

required number/dosage of applications. Prevention of 

pollution in the first place, particularly given that only a 

small amount of pesticides even reach pests (Pimentel 

& Burgess, 2012), is less economically and biologically 

costly than pollution clean-up.

Ultimately, cutbacks in consumption would reduce 

pollution associated with industry and development 

and are steps that individuals can take to reduce their 

pollution footprint. At the global scale, coordinated 

and collaborative efforts across intergovernmental 

agencies, international NGOs, stakeholders in industry, 

agriculture, government, and society members to 

reduce the amount of pollution entering natural 

systems are necessary. Though it is important to 

emphasise the challenges associated with such 

proposed concerted efforts due to the disproportionate 

global distribution of resources and wealth. Holistic 

approaches that consider strategies for supporting 

such actions in entities with limited resources or whose 

economies strongly depend on agriculture or whose 

political structures limit with regulations associated with 

environmental impacts remains a central challenge. 

To summarise, if stakeholders in industry, agriculture, 

government, and society members work together 

to reduce the amount of pollution entering natural 

systems, amphibians and other species, including 

humans, are less likely to experience negative conse-

quences of exposure—consequences that often do not 

reveal themselves for years. 

Conclusions

In the last three decades, we have made substantial 

progress towards understanding how contaminants 

influence amphibians and the critical questions we 

need to address. Notably, we have addressed many 

priority points highlighted in the 2007 ACAP (Table 

4.1). While we have made headway, there remain 

several research gaps. Of note, continued research 

is needed to understand the dynamics of how 

contaminants interact with other important stressors 

(i.e. habitat degradation, disease, climate change) 

to influence amphibians in potentially antagonistic, 

additive, or synergistic ways. Given the sheer number 

of different contaminants and the potential for diverse 

contaminant mixtures, an important need remains for 

predictive models that accurately assess the effects of 

individual and contaminant mixtures across ecological 

scales and organisations from molecular and physio-

logical levels to systemic population and community 

levels. Importantly, this effort will require continued 

integration of multiple techniques (lab to field), as well 

as scientists with diverse expertise across biology 

(molecular to landscape levels). Researchers continue 

to study and understand the contribution of long-term 

and multi-generational effects of contaminants on 

Research gaps from ACAP 2007 Current status

Experimental contaminant research has focused almost 

solely on the aquatic life stage for amphibians

This remains a significant weakness in our understanding 

of how contaminants influence amphibians. While aquatic 

exposure remains the most likely site of exposure for 

amphibians with complex life cycles, there are exposure 

risks to terrestrial life stages and species. Research not 

only remains focused on aquatic life stages but there 

is geographic bias that should be addressed in future 

efforts.
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Alytes obstetricans tadpoles are placed in clean beakers with 40 ml of water for 60 min to measure baseline glucocorticoids. This can be done in the field (seen here in 
Asturias, Spain) and repeatedly to measure stress response and recovery from each tadpoles. This species is currently classified as Least Concern. © Caitlin Gabor 
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